Course Outline


  • Overview of RAPIDS features and components
  • GPU computing concepts

Getting Started

  • Installing RAPIDS
  • cuDF, cUML, and Dask
  • Primitives, algorithms, and APIs

Managing and Training Data

  • Data preparation and ETL
  • Creating a training set using XGBoost
  • Testing the training model
  • Working with CuPy array
  • Using Apache Arrow data frames

Visualizing and Deploying Models

  • Graph analysis with cuGraph
  • Implementing Multi-GPU with Dask
  • Creating an interactive dashboard with cuXfilter
  • Inference and prediction examples


Summary and Next Steps


  • Familiarity with CUDA
  • Python programming experience


  • Data scientists
  • Developers
 14 Hours

Number of participants

Price per participant

Testimonials (5)

Related Courses

Data Analysis with Python, Pandas and Numpy

14 Hours

Accelerating Python Pandas Workflows with Modin

14 Hours

Machine Learning with Python and Pandas

14 Hours

Scaling Data Analysis with Python and Dask

14 Hours

FARM (FastAPI, React, and MongoDB) Full Stack Development

14 Hours

Developing APIs with Python and FastAPI

14 Hours

Scientific Computing with Python SciPy

7 Hours

Game Development with PyGame

7 Hours

Web application development with Flask

14 Hours

Advanced Flask

14 Hours

Build REST APIs with Python and Flask

14 Hours

GUI Programming with Python and Tkinter

14 Hours

Kivy: Building Android Apps with Python

7 Hours

GUI Programming with Python and PyQt

21 Hours

Web Development with Web2Py

28 Hours

Related Categories